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ABSTRACT

In this paper, we deal with the problem of object detec-
tion in aerial images. A lot of efficient approaches uses a cas-
cade of classifiers which process vectors of descriptive fea-
tures such as HOG. In order to take into account the variabil-
ity in object dimension, features at different resolutions are
often concatenated in a large descriptor vector. This prevents
from taking into account explicitly the different resolutions
but results in losing some valuable information.

To overcome this problem, we propose to use a new
method based on a SVM network. Each resolution is pro-
cessed, regardless to the others, at the input layer level, by a
dedicated SVM. The main drawback of using such a network
is that the computational complexity for the classification
phase drastically increases. We propose then to foster an
incomplete exploration of the network by defining an activa-
tion path. This activation path determines an order to activate
the network neurons, one after the other, and introduces a
rejection rule which allows the process to end before crossing
the whole network.

Experimental results are obtained and assessed in an in-
dustrial application of urban object detection. We can observe
an average gain of 17% in precision while the computational
cost is divided by more than 5, with respect to a standard
method.

Index Terms— Network, Multi-Resolution, Object de-
tection, SVM, Aerial Imagery

1. INTRODUCTION

In computer vision, object detection in natural images is a ma-
jor challenge [1]. The goal is to be able to detect the presence
or not of an object and to delineate its boundaries or, at least,
a bounding box around it. Many practical applications can
be found as face recognition in photography [2, 3], pedestrian
detection [4, 5] or car detection in aerial imagery [6]. A semi-
nal paper by Viola and Jones was published [2] in 2001, where
the classifier, based on Haar-like features, detects efficiently
faces. The authors propose then to reduce the complexity of

the learning step by using Adaboost [7, 8] where they select
the best subsets of features to create a so-called cascade ar-
chitecture which combines different classifiers. This cascade
has the form of a degenerated tree [9] where each classifier
is activated in terms of its preceding classifier. Such an ap-
proach reduces the computational time by 15 [2], allowing
the application to be real-time.

Since 2001, there is two main trends in object detections.
The first one introduces efficient feature [10] as Histograms of
Oriented Gradient (HOG) [11] which are now widely used.
They characterize the distribution of gradient intensity and
direction in the object, which is closely related to contours
defining the object shape. More recently, Zhu and al. [4] pro-
posed to extract and concatenate HOG from different resolu-
tions in a multi-resolution HOG vector. But in this case, we
may lose some valuable information about resolution when
we concatenate all resolutions into a single feature vector.
Moreover, the Adaboost step does not take into account the
resolution as it searches only direct strong subset. An impor-
tant issue is then to propose a new way to integrate explicitly
the multi-resolution features in the learning process.

The second trend uses an efficient architecture to combine
classifiers. In particular, the so-called Deep Learning meth-
ods are based on an actual network of classifiers [3, 12, 13].
In that case, we do not have a cascade structure: we do not ac-
tivate the classifiers in the ascending order of complexity and
objects are no more generally detected by low-complexity
classifiers, leaving high-complexity classifiers analyzing a
minority of cases. This requires then to find a new method of
activation of the network to get efficient algorithms.

The rest of the paper is organized as follows : first, we
propose in section 2 to integrate a multi-resolution descriptor
based on HOG features in a SVM network in order to really
combine the different levels of resolution. Then, in section
3, we explain how to reduce the complexity of the obtained
SVM network with an efficient activation scheme. In section
4, we present some experiments to evaluate the performance
of our multi-resolution architecture for an object detection ap-
plication in aerial imagery. Finally we present some tracks for
future research in section 5.

978-1-4673-7454-5/15/$31.00 c©2015 IEEE



2. AN SVN NETWORK BASED ON
MULTI-RESOLUTION DESCRIPTORS

2.1. Multi-Resolution Descriptor Definition

In order to get a robust multi-scale descriptor, we normalize
the bounding box of each object of the training database to an
image of a constant size as in [2]. Then, we extract the HOG
[11] feature in a sliding window on the normalized image of
the object. For an object, we obtain a vector of HOG features
and to get a multi-resolution descriptor, we extract the HOG
vector with different sizes of sliding window as in [4]. We
define the set of resolutions of extraction R = {0, .., R} with
R the number of resolutions. We note f (r)j the feature vector
HOG with the resolution r ∈ R and j the sliding window
position. At the end, for one normalized image we obtain R
HOG vectors, noted f (r), where f (r) is the concatenation of
all f (r)j from all the sliding window positions with r ∈ R.
Figure 1 resumes the extraction process.

Usually, the R HOG vectors are concatenated in a sin-
gle huge vector, noted f [4] which is the input vector for the
learning process. During the testing step, extraction and clas-
sification on the full vector f , for each testing window, takes a
lots of time. To reduce the complexity we can use the cascade
of windows rejector approach. Viola and Jones [2] propose
to identify a strong features subset with an AdaBoost algo-
rithm [8]. A drawbacks of Adaboost is that the strong subset
may merge several features from different resolutions, los-
ing information about a specific resolution. In order to avoid
this problem, we propose to train several classifiers on each
resolution and to combine all these classifiers using an SVM
network. We thus build an SVM network were each neuron is
an SVM classifier.

2.2. Building a Network of Linear SVM in order to Inte-
grate Multi-Resolution

The presented approach does not use only the single vector
f but distinguishes the information coming from the different
resolutions, by a network using. Usually, a network is used
to combine different features into a same framework without
normalization problem. For example, we can easily concate-
nate HOG with the Haar-like features or the Speeded Up Ro-
bust Features (SURF) [14]. For this reason, neural network is
often used to treat detection problems [3].

We propose to treat more specifically each resolution by
feeding an SVM neuron with a resolution f (r), r ∈ R. For
each resolution in R, an input neuron takes the vector f (r) as
shown in Figure 1. A series of hidden layers are then ran-
domly connected to previous layer. The output network neu-
ron is finally full connected to all neurons from the last hidden
layer.

Support vector machine (SVM) method has already been
successfully used to solve detection problems. Each linear
SVM [15] will then be considered as a neuron [12, 16, 17].

Fig. 1. Schema of network inputs to our detection algorithm.

During the learning, we train sequentially each SVM-neuron
starting from the first layer until the last layer. Each linear
SVM computes a vector known as the weight vector, noted
w(l), with l ∈ {0..L} the number of SVM-neuron and L the
size of the network. Once learned, each linear SVM takes a
vector f (l) as an input and return the dot product with w(l) ;
we denote this local classification s(l) ∈ R :

s(l) =< f (l), w(l) > (1)

Beside, an additional treatment is applied to the classi-
fication score s(l) before returning this value to the son of
the SVM-neuron l. This treatment consists of applying an
activation function to the dot product s(l) which its purpose
is to break the linearity. We define p(l) ∈ [0..1] the activa-
tion function, such as a sigmoid function, associated with the
SVM-neuron l :

p(l) = (1 + e−α
(l)s(l)+λ(l)

)−1 (2)

Where p(l) the output probability of the SVM-neuron number
l, α(l) and λ(l) are two parameters computed with a validation
database according to [18]. The output SVM-neuron has an
activation function p(L−1) that gives the final probability for
the network to have found the interested object.

Thus, in our proposed approach each input SVM-neuron
takes only one resolution. Nevertheless, we can also create
efficient input SVM-neurons with other combinations of fea-
tures. For this purpose, we search for the best subsets of fea-
tures. This can be done by two ways: we can use a selec-
tion method like Adaboost or we can just randomly choose
a subset of the full feature vector f as in [19]. The problem
with a selection method is that we can find only the strong
subsets of features for the input SVM-neurons without taking
account the hidden layers. So we prefer the second solution
which could give better results using the network. We define
a random neuron as an SVM-neuron in the input layer with a
random subset of features. Each random neuron is randomly
connect to the hidden layer as the input SVM-neurons.



3. AN EFFICIENT ACTIVATION SCHEME TO
SPEED-UP PROCESSING

3.1. Complexity of a Network

During the evaluation, the entire SVM network is activated in
order to give a probability for a query window. The compu-
tational complexity is then proportional to the sum of the di-
mension of each vector in input of all the neurons [20]. Even
if the computational complexity is linear, we need to activate
few billions of windows for our entire SVM network [21].

The computational cost is so expensive and the classifier
cannot be used for any application without the cascade re-
ject system [2]. Another solution would consist to reduce the
number of testing windows with a preselection [22] but there
is a risk of forgetting some good windows.

To tackle the issue, we propose to adapt the cascade reject
system into our SVM network. Each neuron is consequently
activated in a predefined order and thus the full network does
not necessary require an entire activation.

3.2. Speeding Up the Network

In order to classify a given input feature vector, we propose,
to traverse the network in a cascade manner and stop the ex-
ploration as soon a decision can be done. Once a traverse path
has been built, given an input vector, each neuron is activated
sequentially, i.e. each neuron (l) outputs a value p(l) and we
select each neuron in the order defined by the traverse path. If
the output p(l) given by the neuron, after activation, is lower
than a precalculated threshold θ(l), the window is rejected.
Nevertheless, if the output given is higher than a precalcu-
lated threshold θ(l) we activate the next neuron, as shown in
Figure 2.

The arising question is how to build the traverse path (also
named activation path)? The process is iterative and consists,
for each iteration, to find the best next neuron to activate. The
best next neuron belongs to the set of neurons which are con-
nected to the neurons belonging to the path, i.e. previously
activated. In order to find this best next neuron, we define a
cost function to associate a cost to each neuron and then select
the neuron with the lower cost to be the best next neuron and
is defined for neuron l as:

c(l) = dim(f (l)) +
∑

p∈Fathers(l)

c(p) (3)

With dim the function that gives the dimension of a vector
and Parent(l) the set of neurons which are the fathers of the
neuron (l). In the figure 2, we have dim(f1) < dim(f2) <
dim(f3) and thus c(A) < c(B) < c(C). The first two neurons
add in the activation path are the neuron A and the neuron B.
In this example, we also assume dim(f1) + dim(f2) + 2 <
dim(f3) which implies that c(D) < c(C) and therefore the
neuron D has the third position in the activation path. The
following activated neurons are C, E and F .

Fig. 2. A small network and its activation scheme.

Now, given an activation path, we have to set the thresh-
old value θ(l) that is used for each output p(l) in order to de-
cide if each neuron rejects the input vector or if it activates
the next neuron in the activation path, as in equation 4 :

∀l ∈ {1..L}, if
{
p(l) ≤ θ(l) → stop the traverse
p(l) > θ(l) → activate the next neuron

(4)
The threshold θ(l) should be defined to minimize the number
of false negatives and thus do not reject any object. Using a
validation database for each neuron we fix the threshold θ(l) to
maximize the recall, under the constraint to have a precision
greater or equals to the minimal value p(l)min, see equation 5 :

θ(l) = argmax
θ∈[0..1]

Recall(l)(θ) such that Precison(l)(θ) ≥ p(l)min
(5)

with Recall(l)(θ) and Precison(l)(θ) the functions giving the
recall and precision of neuron l for a θ threshold fixed.

Note that there is two strategies to determine the value
p
(l)
min. Firstly, we may consider p(l)min as a constant value.

Secondly, we may consider that p(l)min value increases with
the computational cost of the neuron. The second approach
is close to the system of cascade reject. For example, in the
Viola and Jones approach [2], the more we use models for
detection, the more we increase the precision but the recall
decreases.

When we search for the best threshold θ(l) the neuron l
has a precision higher than the minimal precision p(l)min. Un-
der this condition, the recall of the neuron l may be low and
so it will reject a lot of feature vectors. We define neurons
which have a recall lower than 90% as bad neurons. These
bad neurons are not added to the activation path and they can-
not reject any windows. However, they can be activated to
give their output s(l) to their sons. In fact, the activation path
does not contain the L neurons from the network but only a
subset with the best of them.

To resume, after the learning of the network, activation
path is built. This activation path is the ordered list of neuron
numbers defining the order of the network. Additionally, a



threshold θ(l) is also computed for each neuron. The thresh-
old allows to define a stop criterion in order to stop the net-
work exploration during the testing phase. p(l)min values are
also set to determine the flexibility of each neuron.

4. EXPERIMENTAL RESULTS AND EVALUATION
OF THE METHOD

4.1. Description of Image Data

In this application, we are interested to the detection of ur-
ban objects in high-definition aerial imagery. More specif-
ically, we focus on detecting tombs in cemetery images for
geo-localization and digital heritage purposes [23]. Tomb de-
tection is a very challenging problem as tombs vary substan-
tially in appearance, color, size and disposition on aerial im-
ages. Moreover, vegetation, shadows created by the numer-
ous buildings, walking people or utility vehicles may create
many distortions and occlusions in the images. At last, this is
multiple object detection as cemeteries contain many tens or
thousands tombs.

To assess our method we use a database of 24 high-
resolution (2.5 cm/pixel) aerial images with size about 5000
x 5000 pixels of French cemeteries given by the Berger Lev-
rault company 1.

For the training database we use 19 images, which con-
tain about 4,500 tombs. For the validation database we use 2
images, about 700 tombs. To evaluate our algorithm we use 3
cemetery images (about 750 tombs) where we have manually
delineated the rectangular bounding boxes of tombs which
will be considered as ground truth.

During the evaluation step, detection results are given as
a list of rectangular bounding boxes. To be considered as a
correct detection, the area of overlap, noted A (see eq 6), be-
tween the detected boxes Bd and the ground truth Bg must
exceed 58%.

A = Area(Bd ∩Bg).Area(Bd ∪Bg)−1 (6)

4.2. Finding Optimal Parameters for Network Topology

A lot of parameters can affect the final probability given by
classifier. It is a hard problem to optimize the network be-
cause we need to find the best number of random and hidden
neurons [24]. In this paper, we propose to use simulations
which proceed in two steps. Firstly, we determine the number
of hidden neurons. Secondly, we search for the best number
of random neurons. We use the High Performance Comput-
ing resources of HPC-LR2 in order to find the best number
of hidden and random neurons in a reasonable computational
time. In Figure 3, we observe the network becomes more ro-
bust with the increasing number of hidden neurons. However,

1Berger-Levrault is a French public regulation expert that addresses
healthcare and local public administrations, www.berger-levrault.com

2HPC@LR: High Performance Computing from Languedoc-Roussillon,
https://www.hpc-lr.univ-montp2.fr

after using more than 300 hidden neurons the efficiently of the
network decreases by 3.2%. This performance drop is caused
by the over fitting of the network on the training database. In
our case we find the best combination of parameters is about
300 hidden neurons and 200 random neurons.

Fig. 3. Average of the precision compute with the validation
database for a recall between 45% and 80% as function of the
number of hidden and random neurons.

4.3. Evaluation of the Multi-Resolution Architecture

Figure 4 illustrates the performance of the method without
network i.e. only one SVM which takes the full feature vector
f and the method using SVM network. The two methods have
a maximum recall of 85% because in the window fusion phase
we delete windows with lower probabilities. So even if we set
a low detection threshold we do not detect all graves.

The performance of the two methods differs in the way to
converge. Indeed, the method with network is more efficient
for a recall range from 45% to 80%. For example, we notice
for a recall of 75% the precision with our method is increase
by 17%. Using a network with few resolutions as inputs out-
performs the approach using only one SVM model. This can
be explained by the fact that SVM network using a sigmoid
activation function create a non-linear output compared to a
single linear SVM.

Fig. 4. The orange curve shows the performance of the
method with a single SVM. The blue curve gives the effi-
ciency of our SVM network approach.



4.4. Evaluation of the Activation Path

Approaches time (HH:MM) average precision
Single SVM 15:54 60.6%
Our SVM network 24:35 75.0%
Activation path 04:58 75.3%
pmin increases
Activation path 05:48 74.5%
pmin constant

Table 1. Performance and computational cost during the eval-
uation step for the different methods on three images.

As stated, the main problem of network approach is the
computational cost. Indeed, as we can see on Table 1 that the
time requirements for the evaluation step is huge with an aver-
age of 24 hours 35 min by image. This prevents any practical
use.

Consequently we need to use the speeding up network.
In the table 1, we give performance of system with path in
two scenario: - the pmin value increases from 1% to 25% ;
- pmin is a constant value set to 5%. We can see there is no
major difference in efficiently between the network which is
always full activate and the network which using an activation
scheme. Indeed, the average precision of the full network is
around 75.0% against 74.5% and 75.3% for networks using
an activation scheme. One day of computational performance
is required to activate the network without any optimization.
However, using an activation scheme reduces the time taken
to 5.5 hours, thus a reduction by 4. In addition, the speeding
up network used 2.5 times less than only one SVM.

Using the table 1 we examine the best strategy to build
the activation scheme. This table shows that the scenario with
a constant minimal precision pmin takes more time than the
scenario with an increasing pmin. Indeed, in the increasing
scenario the minimal precision pmin increases until 25% and
so the network rejects more windows. This explains the time
computational required is reduced by 3,000 seconds. We can
thus predict if the constant minimal precision increases, the
time required decreases. As we can see from Figure 5, the
computational times is converging to a computational time
close to 15,000 for a pmin value greater than 8%. However,
if the minimal precision pmin is too high the time required
converges because the number of bad neurons increase with
the value pmin. Finally, for a pmin value higher than 8%, the
constant scenario is the more cost effective than the increasing
scenario and we reduce the computational time by 5.5. The
constant scenario is more efficiently but it needs a validation
database to fix the pmin to 8%.

5. CONCLUSION AND PERSPECTIVES

In this paper, we presented a SVM network which takes into
account full information from each resolution. For each reso-

Fig. 5. Computational cost for the speed up network as func-
tion of the constant pmin value with an average precision
around 75%.

lution, we extract an HOG feature for all positions and during
the learning step, we process each resolution regardless to the
others input nodes of our network. Then, the hidden layers
allow to combine the outputs of each input layer to get the
best non-linear network. We show that, this kind of approach
increases the precision by 17%.

Nevertheless, such a network is very complex since there
are many nodes and the computational cost increases by 50%
compared to a single SVM. To reduce the complexity we pro-
pose to activate each layer in a predefined order which defines
an activation scheme. This method allows a partial activation
of the entire network and reduces the computational time by
a 5.5 factor in average.

Future work will deal with adding some features. For ex-
ample, we could introduce some shape descriptors, such as
SURF [14], to detect a cross pattern on the grave. Indeed,
when we divide the vector into few input layers we allow to
use different types of feature without any normalization prob-
lem. Another extension of our work could be to extend the
activation path to an huge network of several thousand neu-
rons as a convolutional neural networks [25].
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